DEPARTMENT OF ELECTRICAL ENGINEERING Govt. Polytechnic Jajpur, Ragadi

LESSON PLAN FOR ACADEMIC SESSION - 2024-25 CONTROL SYSTEM ENGINEERING

Course Code: TH-3

Semester: 6TH

Total Periods: 75(60L+15T)

Examination: 3 Hours

Theory Periods: 4 P/Week

Internal Assessment: 20 Marks

Tutorial: 1 P/Week

End Semester Examination: 80 Marks


Maximum Marks: 100

Semester From Date: 04/02/2025 To 17/05/2025

Name of Teaching Faculty: SRI. PRASANTA KUMAR MOHAPATRA

WEEK	PERIOD	TOPIC
1st	1 st	FUNDAMENTAL OF CONTROL SYSTEM
		Classification of Control system, Open loop system & Closed loop system and its
		comparison
	2 nd	Effects of Feed back
	3 rd	Standard test Signals (Step, Ramp, Parabolic, Impulse Functions)
	4 th	Servomechanism
	5 th	Tutorial (Doubt clearing and revision class)
2 nd	1 st	MATHEMATICAL MODEL OF A SYSTEM
		Transfer Function & Impulse response, Properties, Advantages & Disadvantages of
	and	Transfer Function
	2 nd	Poles & Zeroes of transfer Function
	3 rd	Simple problems of transfer function of network.
	4 th	Mathematical modelling of Electrical Systems (R, L, C, Analogous systems)
	5 th	Tutorial (Doubt clearing and revision class)
$3^{\rm rd}$	1 st	CONTROL SYSTEM COMPONENTS Components of Control System, Gyroscope,
	2 nd	Synchro's, Tachometer
	3 rd	DC servomotors
	4 th	Ac Servomotors
	5 th	Tutorial (Doubt clearing and revision class)
4 th	1 st	BLOCK DIAGRAM ALGEBRA & SIGNAL FLOW GRAPHS Definition: Basic Elements of Block Diagram Canonical Form of Closed loop Systems
	2 nd	Rules for Block diagram reduction
	3 rd	Procedure for of Reduction of Block Diagram
	4 th	Simple Problem for equivalent transfer function
	5 th	Tutorial (Doubt clearing and revision class)
5 th	1 st	Basic Definition in Signal Flow Graph & properties
	2 nd	Construction of Signal Flow graph from Block diagram
	3 rd	Mason's Gain formula
	4 th	Simple problems in Signal flow graph for network
	5 th	Tutorial (Doubt clearing and revision class)
6 th	1 st	TIME RESPONSE ANALYSIS. Time response of control system. Standard Test
		signal. Step signal,
	2 nd	Ramp Signal, Parabolic Signal, Impulse Signal
	3 rd	Time Response of first order system with: Unit step response, Unit impulse
		response
	4 th	Time response of second order system to the unit step input. Time response
		specification. Derivation of expression for rise time
	5 th	Tutorial (Doubt clearing and revision class)

7 th	1 st	Derivation of expression for peak time, peak overshoot, settling time and steady state
	2 nd	Steady state error and error constants
	3 rd	Types of control system. [Steady state errors in Type-0, Type-1]
	4 th	[Steady state errors in Type-2 system] Effect of adding poles and zero to transfer
	4	function.
	5 th	Tutorial (Doubt clearing, Numerical and revision class)
8 th	1 st	Response with P, PI controller
	2^{nd}	Response with PD and PID controller
	3 rd	ANALYSIS OF STABILITY BY ROOT LOCUS TECHNIQUE.
		Root locus concept
	4 th	Construction of root loci.
	5 th	Tutorial (Doubt clearing, Numerical and revision class)
9 th	1 st	Construction of root loci.
	2^{nd}	Rules for construction of the root locus.
	3 rd	Rules for construction of the root locus.
	4 th	Problems related to Root Locus
	5 th	Tutorial (Doubt clearing and revision class)
10 th	1 st	Problems related to Root Locus
	2 nd	Effect of adding poles and zeros to G(s) and H(s).
	3 rd	Problems related to Root Locus
	4 th	Problems related to Root Locus
	5 th	Tutorial (Doubt clearing and revision class)
11 th	1 st	FREQUENCY RESPONSE ANALYSIS.
		Correlation between time response and frequency response
	2^{nd}	Polar plots.
	3 rd	Problems related to Polar plots.
	4 th	Bode plots.
	5 th	Tutorial (Doubt clearing and revision class)
12 th	1 st	Problems related to Bode plots
	2^{nd}	All pass and minimum phase system.
<u> </u>	3 rd	Computation of Gain margin and phase margin.
<u> </u>	4 th	Problems related to computation of Gain margin and phase margin
	5 th	Tutorial (Doubt clearing and revision class)
13 th	1 st	Log magnitude versus phase plot.
<u> </u>	2^{nd}	Closed loop frequency response.
	3 rd	NYQUIST PLOT Principle of argument
	4 th	Nyquist stability criterion.
	5 th	Tutorial (Doubt clearing and revision class)
14 th	1 st	Problems related to Niquist stability
	2 nd	Niquist stability criterion applied to inverse polar plot.
	3 rd	Problems related to inverse polar plot.
	4 th	Effect of addition of poles and zeros to G(S) H(S) on the shape of Niquist plot
. = 0	5 th	Tutorial (Doubt clearing and revision class)
15 th	1 st	Assessment of relative stability.
	2 nd	Constant M circle
	3 rd	Constant N circle
	4 th	Nicholas chart.
	5 th	Tutorial (Doubt clearing and revision class)

