GOVERNMENT POLYTECHNIC JAJPUR
A/ P: Ragadi, Block: Korci, Dist.: Jajpur, Odisha- 755019
Website:https://www.gpjajpur.orgE-mail: principalgpjajpur@yahoo.co.in Contact: 9437155107

LESSON PLAN

3RD SEMESTER, ELECTRICAL

	SEMESTER	NAME OF THE TEACHING FACULTY. Smt. Pragyan Priyadarsini			
DISCIPLINE	SEMESTER	SEMESTER FROM DATE : 01/07/2024 TO DATE: 08/11/2024			
SUBJECT ENGG M	NO OF	SEMESTER FROM DATE : 01/07/2024			
ATHEMATICS-III	DAYS/WEEKS CLASS ALLOTED	NO OF WEEKS: 16			
	CEASS ALLOTED				
WEEKS	CLASS DAY	TOPICS			
		no. 1 is C. Isamushan			
	1st	i) Introduction of complex number			
	2nd	ii) Real and Imaginary numbers.			
1st	3rd	iii)Complex numbers, conjugate complex numbers.			
	4th	iv) Modulus and Amplitude of a complex			
		v) Geometrical Representation of Complex Numbers			
		vi) Properties of Complex Numbers			
	lst	i) Determination of three cube roots of unity and their properties.			
2nd	2nd	ii) De Moivre's theorem with example			
	3rd	iii) Discuss objective questions			
	4th	iv) Solve problems on complex number . i) Define rank of a matrix.			
	1st	ii) Elementary row transformations to determine the rank of a matrix.			
3rd	2nd	iii) State Rouche's theorem for consistency of a system of linear equations in n unknowns.			
	3rd 4th	iv) Solve equations in three unknowns testing consistency.			
	1st	i) Solve problems on matrices.			
	2nd	ii) Introduction of linear differential equation			
4th	2110	iii) CLASS TEST-1			
7411	3rd	iv) general solution of linear Differential Equations in terms of C.F. and P.I.			
	4th	v) Discuss some problem on linear Differential Equations in terms of C.F. and P.I.			
	1st	i) Partial differential equations by eliminating arbitrary constants and arbitrary function .			
	2nd	ii) some example on P.D.E by eliminating arbitrary constants and arbitrary function .			
5th	3rd	iii)Partial differential equations of the form Pp + Qq = R			
	4th	iv) Solve problems on Linear differential equation.			
	lst	i) Discuss objective type question with answer.			
		i) Define Gamma function .			
	2nd	ii) Reduction formula for [(n)			
Ž.	3rd	i) Define Laplace Transform of a function f(t).			
- 6th		ii) Condition for the existance.			
		iii) Transforms of elimentary functions.			
	4th	i) Some examples of elimentary function.			
	701	ii) Explain linear, shifting property of L.T.			
	1st	i) First shifing property.			
	2nd	ii) Application of first shifting property.			
7th		iii) Change of scale property			
	3rd	iv) Discuss some problem regarding on shifting property of L.T.			
	4th	v) Laplace transform of derivatives .			
		vi) Laplace transform of integral.			
	1st	i) Inverse Laplace Transform . ii) Derive formulae of inverse L.T.			
0.4	2nd	iii) Explain method of partial fractions .			
8th	3rd	iv) Discuss some problem regarding on I.L.T. of partial fraction .			
	4th	v) Solve problems on L.T.			
		i) Define periodic functions.			
	1st	ii) Founier Series defination.			
	10 10	iii) Some useful integrals.			
	2nd	iv) State Dirichlet's condition for the Fourier expansion of a function.			
9th		v) Convergence of Dirichlet's condition for the Fourier expansion of a function.			
	3rd	vi) Express periodic function f(x) satisfying Dirichlet's conditions as a Fourier series.			
	4.1	vii) State Euler's formulae.			
	4th	viii) some examples of Euler's formula.			
		i) Dirchelet's Condition.			
	1 st	ii) Discontinuous Functions.			
		i) Define Even and Odd functions and find Fourier Series.			
10th	2nd	ii) Examples of even and odd functions.			
		i) Expansion of an Even Function.			
	3rd	II)Expansion of an odd Function.			
	4th	i) Half Range Series.			
		i) Sine Series and Cosine Series .			
, 11th	1st 2nd	ii) Obtain F.S of continuous functions and having points of discontinuity.			
		i) Discuss some problem on fourier series.			
		ii) Discuss objective type question with answer .			
1		i) Introduction of Numerical methods.			
	, et				

	3rd	ii) Limitation of analytical methods.		
	4th	i) Bisection method with some example		
	1 st	i) Newton- Raphson method.		
120	2nd	ii) some examples of Newton- Raphson method.		
12th	3rd	iii) Discuss exercise of Numerical methods.		
	4th	iv) CLASS TEST -2		
		 Explain finite difference and form table of forward and backward difference. 		
	1 st	ii) Discuss exercise of forword and backword difference.		
Γ		iii) Define shift Operator E .		
13th	2nd	iv) Relation between E & difference operator Δ		
	3rd	v) Newton's Forward interpolation formula for equal intervals.		
	4th	vi) Newton's backward interpolation formula for equal intervals.		
	lst	i)Examples of Newton's forward and backward interpolation formula for equal intervals.		
	2nd	ii) State Lagrange's interpretation formula for unequal intervals.		
14th		iii) Numerical integration and state.		
L	3rd	iv) Newton's Cote's formula.		
	4th	v) Trapezoidal rule.		
	lst	i) Some problems of Trapezoidal rule.		
		ii) Simpson's 1/3rd rule		
15th	2nd	iii) Some problems on Simpson's 1/3rd rule.		
[3rd	iv) Discuss exercise of Finite difference & interpolation.		
	4th	v) Discuss objective type question with answer.		
	1 st	ii) Discuss previous year questions with answer		
16th	2nd	iii) Discuss previous year questions with answer		
1001	3rd	iv) Discuss previous year questions with answer		
	4th	iv) Discuss previous year questions with answer		

Learning Resources:						
SI.No	Title of the Book	Name of Authors	Name of Publisher			
1.	Higher engineering mathematics	Dr B.S. Grewal	khanna publishers			
2.	Elements of mathematics Vol-	Odisha state bureau of text book preparation and production				
3.	Text Book of Engineering Mathematics-I	C.R Mallick	Kalayani publication			
4.	Text Book of engineering mathematics-III	C.R Mallick	Kalayani publication			

Zny un Fry adarshi /01/07/2024