GOVERNMENT POLYTECHNIC JAJPUR

A/ P: Ragadi, Block: Korei, Dist.: Jajpur, Odisha- 755019

DEPARTMENT OF MECHANICAL ENGINEERING (2024-2025)

LESSON PLAN

Discipline: MECHANICAL	Semester: 3RD	Name of the Teaching faculty: GITANJALI SETHI,Sr. Lecturer,Mechanical Engg.					
Subject: Stength Of Material (Th-2)	No of Days /Week class	Semester from Date: 01/07/2024 To Date: 08/11/2024 No of weeks: 15 15					
	alloted: 4						
1ST	1st	(CHAPTER-1)Simple stress& strain					
		Describing different Types of load, stresses & strains,(Axial and tangential)					
	2nd	Description of Hooke's law, Young's modulus, bulk modulus, modulus of rigidity,					
	3rd	Description of Poisson's ratio, derivation of the relation between three elastic constants					
	4th	Numericals on above					
2ND	1st	Description of Principle of super position, stresses in composite section					
	2nd	Numericals on above					
	3rd	Description of Temperature stress, determination of the temperature stress in compos					
	Sra	bar (single core)					
	4th	Numericals on above					
3RD	1st	Description of Strain energy and resilience, Stress due to gradually applied load					
	2nd	Description of Stress due to suddenly applied and impact load					
	3rd	Numericals on above					
	4th	(CHAPTER-2)Thin cylinder and spherical shell under internal pressure					
		Defining hoop and longitudinal stress, strain					
	1st	Derivation of hoop stress, longitudinal stress, hoop strain					
4TH	2nd	Numericals on above					
	3rd	Description of longitudinal strain and volumetric strain					
	4th	Computation of the change in length, diameter and volume					
	1st	Numericals on above					
	2nd	REVISION AND TEST					
	3rd	(CHAPTER-3)Two dimensional stress systems					
5TH		Introduction to Two dimensional Stress system, Concept of Principal plane and principal					
		stress and strain; stresses in oblique plane					
	4th	Determination of normal stress, shear stress and resultant stress on oblique plane of a					
		body					
		Determination of normal stress, shear stress and resultant stress on obligue plane of a					
	1st	hody					
CT LI	2nd	Numericals on above					
6TH	3rd	Location of principal plane and computation of principal stress					
	44	Location of principal plane and computation of principal stress					
7тн	4th	Location of principal plane and computation of principal stress					
	1st	Numericals on above					
	2nd	using Mohr's circle					
	3rd	Numericals on above					
	4th	Numericals on above					
	1st	(CHAPTER-4)Bending moment& shear force					
		Description of Types of beam and load					
1	L						

	and	Consists of these four and bandles memory			
STH	Zna	Description of Shear Force and Bending moment Description of Shear Force and Bending moment diagram and its salient features			
	3rd	illustration in cantilever beam subjected to point load.			
	4th	Description of Shear Force and Bending moment diagram and its salient features			
		illustration in simply supported beam subjected to point load.			
	1et	Description of Shear Force and Bending moment diagram and its salient features			
	150	illustration in over hanging beam subjected to point load.			
	2nd	Description of Shear Force and Bending moment diagram and its salient features			
9TH		illustration in cantilever beam subjected to UDL.			
	3rd	Description of Shear Force and Bending moment diagram and its salient features			
		Description of Shear Force and Rending moment diagram and its salient features			
	4th	illustration in over hanging heam subjected to UD			
	1st	Numericals on above			
	200				
10TH	LIN	(CUADTED E)Theory of simple handling			
	3rd	Assumptions in the theory of simple bending			
	446	Assumptions in the theory of bending,			
	400	Derivation of Bending equation			
	150	Description of Moment of resistance introduction to theory of simple bending			
11TH	2nd	Description of Section modulus & neutral axis			
	3rd	Numericals on above			
	4th	Numericals on above			
	1st	Numericals on above			
	2nd	(CHAPTER-6)Combined direct & bending stresses			
12TH		Defining column, types of column			
	3rd	Defining Axial load, Eccentric load on column			
	4th	Description of Direct stresses, Bending stresses, Maximum& Minimum stresses.			
	1st	Numericals on above			
	2nd	Description of Buckling load computation using Euler's formula (no derivation) in			
13TH	2na	Columns with various end conditions			
	3rd	Numericals on above			
	4th	REVISION AND TEST			
	1=+	(CHAPTER-7)Torsion			
	150	Assumption of pure torsion			
14TH	2nd	Description of The torsion equation for solid and hollow circular shaft			
	3rd	Comparison between solid and hollow shaft subjected to pure torsion			
	4th	Numericals on above			
15TH	1st	REVISION AND TEST			
	2nd	Previous Years Question Discussion			
	3rd	Previous Years Question Discussion			
	4th	VST			

Learning resources:

SL No.	Author	Title of the book	Publisher
01	S Ramamrutham	Strength of Materials	Dhanpat Rai
02	R K Rajput	Strength of Materials	S.Chand
03	R.S khurmi	Strength of Materials	S.Chand
04	G H Ryder	Strength of Materials	Mc millon and co. Imtd
05	S Timoshenko and D H Young	Strength of Materials	тмн

Glage, c. M Signature of faculty