GOVERNMENT POLYTECHNIC JAJPUR

A/ P: Ragadi, Block: Korel, Dist.: Jajpur, Odisha- 755019

Website: https://www.gpjajpur.org E-mail: principalgpjajpur@yahoo.co.in Contact: 9437155107

DEPARTMENT OF MECHANICAL ENGINEERING

Discipline:					
Mechanical	Semester: 3rd	Name of the Teaching faculty: Suprava Behera Semester from Date: 01 07 2024 To Date: 06.11.2024 No of			
Subject:	No of Semester from Date: 01.07.2024 To Date: 06.11.2024				
Thermal	Days/Week class	weeks: 15			
Engineering-l	alloted: 4	2 1.			
Week	Class Day	Topics			
1st	1st	Concept of Thermodynamic Systems and its classification			
	2nd	Explain closed, open and isolated system			
	3rd	Significance of thermodynamic properties of a system			
	f 4th	Define pressure, volume, temperature, entropy, enthalpy, Internal energy and their units.			
	1st	Define Intensive and extensive properties, thermodynamic process, path, cycle, state, path function, point function			
2nd	2nd	Explain thermodynamic Equilibrium.			
	3rd	Explain Quasi-static Process.			
	4th	Conceptual explanation of energy and its sources			
	1st	Comparison between Work and heat and solve related topic problems.			
	2nd	Define Mechanical Equivalent of Heat. Explain work transfer and displacement work			
3rd	3rd	Solve problems related to work transfer and displacement work			
4th		Solve exercise problems			
	1st	State & explain Zeroth law of thermodynamics.			
4th	2nd	State & explain First law of thermodynamics			
401	3rd	Limitations of First law of thermodynamics and its application			
	4th	Derive Steady flow energy equation and its application to turbine			
) 1st	Derive Steady flow energy equation and its application to compressor			
5th	2nd	State 2nd law of thermodynamics and Clausius statements			
501	3rd	State Kelvin planks statement and application of 2nd law in heat engine			
200	4th	Application of 2nd law in heat pump and refrigerator			
	1st	Determine efficinecy and COP of heat engine			
6th	2nd	Determine efficinecy and COP of heat pump			
θú	3rd	Determine efficinecy and COP of heat refrigerator			
	4th	Solve simple problems on heat engine, heat pump and refrigerator			
7th	1st	Define perfect gas and laws of perfect gas to determine thermodynamic properties and Stat Boyle' law, Chairle's law, Dalton's law of partial pressure			
	2nd	State Gaylussac law, derive general gas equation			
	3rd	Define characteristic gas constant, Universal gas constant, Solve simple problems.			
	4th	Explain specific heat of gas (Cp and Cv) and establish relation between Cp and Cv and define enthalpy of a gas			
	1st	Derive workdone during non-flow process			
8th	³ 2nd	Application of 1st law of thermodynamics to isothermal process.			
	3rd	Application of 1st law of thermodynamics to isobaric process.			
		Application of 1st law of thermodynamics to Isentropic process.			

Sec			
9th	1st	Application of 1st law of thermodynamics to Polytropic process.	
	2nd	Explain free expansion and throttling process.	
	3rd	Assignment evaluation/ class test	
	4th	Explain and classify I.C engine	
	1st	Define terminolgy o IC engine such as Bore, dead centers	
10th	2nd	Define stroke volume, piston speed, RPM and their formula.	
	3rd	Explain working principle of 2-stroke C.I Engine	
	4th	Explain working principle of 2-stroke S.I Engine	
11th	¹ 1st	Explain working principle of 4-stroke C.I Engine	
	2nd	Explain working principle of 4-stroke S.I Engine	
	3rd	Differenciate between 2-stroke and 4-stroke C.I Engine and S.I Engine	
	4th	Derive Carnot cycle	
12th	1st	Solve problems related to Carnot cycle	
	2nd	Derive Otto cycle	
	3rd	Solve problems related to Otto cycle	
	4th	Derive Diesel cycle	
13th	1st	Solve problems related to Diesel cycle	
	2nd	Derive Dual cycle	
	3rd	Solve problems related to Dual cycle	
	4th	Solve excercise problems on Otto and Diesel cycle	
	1st	Solve excercise problems on Dual cycle	
14th	2nd	Define fuel and combustuion and types of fuel	
	3rd	Application of different types of fuel(solid fuel)	
	4th	Application of different types of fuel(liquid fuel)	
15th	1st	Application of different types of fuel(gaseous fuel), Heating values of fuels	
	2nd	Define quality of fuels such as Octane number and Cetane number of I.C engine.	
	3rd	Assignment evaluation/ class test	
	4th	Previous year questions discussion and solve problems.	
•			

Learning resources:

Learnin	9 100001000.		Publisher
SL No.	Author	Title of the book	
01	R.S. Khurmi	Thermal Engineering	S.Chand
	A.R.Basu	Thermal Engineering	Dhanpat Rai
02	A.S. Sarao	Thermal Engineering	Satya Prakash
03			TMH
04	P.K.Nag	Engineering Thermodynamics	
05	Mahesh M	Thermal Engineering	TMH
	Rathore		

Suprava Behera 29,06.2024