GOVERNMENT POLYTECHNIC JAJPUR A/ P: Ragadi, Block: Korei, Dist.: Jajpur, Odisha- 755019 Website: https://www.gpjajpur.org E-mail: principalgpjajpur@yahoo.co.in Contact: 9437155107

DEPARTMENT OF CIVIL ENGINEERING

· LESSON PLAN

Discipline: Civil Engg	Semester: 3rd	Name of the Teaching faculty: Rajashree Nayak	
Subject: Structural Mechanics Th-1	No of Days/Week class alloted: 5 days	Semester from Date:01.07.2024 To Date: 08.11.2024 No of weeks:17	
Week	Class Day	Topics	
	1st	Basic Principle of Mechanics	
	2nd	Force, Moment, support conditions, Conditions of equilibrium	
1st	3rd	C.G & MI, Free body diagram	
	4th	Review of CG and MI of different sections	
	5th	Review of CG and MI of different sections	
	1st	Introduction to stresses and strains	
	2nd	Mechanical properties of materials – Rigidity, Elasticity, Plasticity, Compressibility, Hardness, Toughness, Stiffness, Brittleness,	
2nd	3rd	Ductility, Malleability, Creep, Fatigue, Tenacity, Durability	
	4th	Types of stresses -Tensile, Compressive and Shear stresses	
2 L	5th	Types of strains - Tensile, Compressive and Shear strains	
	1st	Complimentary shear stress - Diagonal tensile / compressive Stresses due to shear	
	2nd	Elongation and Contraction, Longitudinal and Lateral strains	
3rd	3rd	Poisson's Ratio, Volumetric strain, computation of stress, strain	
	4th	change in dimensions and volume etc.	
	5th	Numerical	
	1st	Hooke's law - Elastic Constants	
	2nd	Derivation of relationship between the elastic constants	
	3rd	Application of simple stress and strain in engineering field	
4th	4th	Behavior of ductile and brittle materials under direct loads, Stress Strain curve of a ductile material	
	5th	Limit of proportionality, Elastic limit, Yield stress, Ultimate stress, Breaking stress, Percentage elongation, Percentage reduction in area	
5th	1st	Significance of percentage elongation and reduction in area of cross section	
	2nd	Deformation of prismatic bars due to uniaxial load, Deformation of prismatic bars due to its self-weight.	
	3rd	Complex stress and strain	
	4th	Principal stresses and strains: Occurrence of normal and tangential stresses	
	5th	Concept of Principal stress and Principal Planes	
6th	1st	major and minor principal stresses and their orientations	

· ·	2nd	Mohr's Circle and its application to solve problems of complex stresses		
	3rd	Stresses in beams due to bending: Bending stress in beams – Theory of		
	510	simple bending – Assumptions		
	4th	Moment of resistance – Equation for Flexure– Flexural stress distribution		
	5th	Curvature of beam – Position of N.A. and Centroidal Axis – Flexural		
		rigidity – Significance of Section modulus		
		Shear stresses in beams: Shear stress distribution in beams of		
	1st	rectangular, circular and standard sections symmetrical about vertical		
	- S-	axis.		
	2nd	Shear stresses in beams: Shear stress distribution in beams of		
7th	2110	axis		
ж.	3rd	Concept of torsion, basic assumptions of nurs torsion		
		torsion of solid and hollow circular soctions, palar memory of i		
		torsional shoring strasses, angle of twist torsional shoring strasses		
	5th	torsional rigidity, equation of		
		Combined bending and direct stresses: Combination of stresses		
	lst	combined direct and bending stresses		
	and	Maximum and Minimum stresses in Sections, Conditions for no tension		
8th	2110	Limit of eccentricity		
	3rd	Middle third/fourth rule, Core or Kern for square		
	4th	rectangular and circular sections, chimneys, dams and retaining walls		
	5th	Numerical		
	1st	Columns and Struts, Definition, Short and Long columns		
	2nd	End conditions, Equivalent length / Effective length, Slenderness ratio		
9th	3rd	Axially loaded short and long column, Euler's theory of long columns		
Stri	4th	Critical load for Columns with different end conditions		
	5th	Types of Loads: Concentrated (or) Point load, Uniformly Distributed load (UDI)		
	1st	Types of Supports: Simple support, Roller support, Hinged support, Fixed		
		support		
	2nd	Types of Reactions: Vertical reaction, Horizontal reaction, Moment		
10th		reaction		
	3rd	Types of Beams based on support conditions		
	4th	Calculation of support reactions using equations of static equilibrium		
		Shear Force and Bending Moment: Signs Convention for S.F. and B.M		
	1st	S.F and B.M of general cases of determinate beams with concentrated		
		loads and udl only		
11th	2nd	S.F and B.M diagrams for Cantilevers		
11(1)	3rd	Simply supported beams and over hanging beams		
	4th	Position of maximum BM, Point of contra flexure		
	5th	Relation between intensity of load, S.F and B.M.		
12th	1.st	Numerical 🖏		
	2nd	Introduction: Shape and nature of elastic curve (deflection curve)		
	3rd	Introduction: Shape and nature of elastic curve (deflection curve)		
	4th	Relationship between slope, deflection and curvature (No derivation)		
-	5th	Relationship between slope, deflection and curvature (No derivation)		

	1st	Importance of slope and deflection	
13th	2nd	Slope and deflection of cantilever and simply supported beams under concentrated and uniformly distributed load (by Double Integration method, Macaulay's method)	
	3rd	Slope and deflection of cantilever and simply supported beams under concentrated and uniformly distributed load (by Double Integration method, Macaulay's method)	
	4th	Slope and deflection of cantilever and simply supported beams under concentrated and uniformly distributed load (by Double Integration method, Macaulay's method)	
	5th	Slope and deflection of cantilever and simply supported beams under concentrated and uniformly distributed load (by Double Integration method, Macaulay's method)	
	1st	Indeterminacy in beams	
	2nd	Principle of consistent deformation/compatibility	
14th	3rd	Analysis of propped cantilever	
5 14	4th	Analysis of propped cantilever	
	5th	Analysis of propped cantilever	
	1st	fixed and two span continuous beams by principle of superposition	
	2nd	SF and BM diagrams (point load and udl covering full span)	
15th	3rd	SF and BM diagrams (point load and udl covering full span)	
	4th	SF and BM diagrams (point load and udl covering full span)	
	5th	SF and BM diagrams (point load and udl covering full span)	
	1 st .	Introduction: Types of trusses	
	2 nd	statically determinate and indeterminate trusses	
16th	3 rd	statically determinate and indeterminate trusses	
	4 th	degree of indeterminacy	
	5 th	stable and unstable trusses	
- 	1 st	advantages of trusses.	
17th	2 nd	Analysis of trusses: Analytical method (Method of joints, method of Section)	
	3 rd	Analysis of trusses: Analytical method (Method of joints, method of Section)	
	4 th	Analysis of trusses: Analytical method (Method of joints, method of Section)	
	5th	Analysis of trusses: Analytical method (Method of joints, method of Section)	
18th	1st	CLASS TEST 3, PREVIOUS YEAR QUESTIONS, QUIZ	

LearningResources:

SI No.	Author Name	Name of the Book
1	R.Subramanian Strength of Materials	R.Subramanian Strength of Materials
2	S.Rammrutham	Theory of structure
3	V.N.Vazirani&M.M. Rathwani	Analysis of Structures Vol.1&

Rajasfree Nayan FACULTY SIGNATURE